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Abstract

Pellikaan (1989) has given a noneffective maximal decoding algorithm of a geometric code.
To this end. our purpose is the determination of the minimal integer s, such that the maps
W, (k= 1,2),dcfined in Pellikaan {1989). are surjective. Then. on the one hand, we show that
the theta divisor of the jacobian variety of an algebraic curve provides partial answers. On the
other hand, for the Klein quartic defined over F,. we determine explicitly divisors of dcgree
8 which allows us to decode up to 5 errors.

1. Introduction

Let 7 be an algebraic projective curve, absolutely irreducible, nonsingular, of genus
g.{g = 2). defined over the finite field F, with ¢ elements, where ¢ is a power of a prime
integer.

We denote by Div(y) the abelian group of the divisors on the curve y and by
Pic’(y) the group Div(y) modulo the principal divisors made up of the divisors of
degree zero.

It is known [11] that there exists an abelian variety J{y) of dimension g and an
Injective map ¢:y — J(y) such that the extension of y to Div(y) establishes an
isomorphism between Pic®(y) and J (7). Moreover.if O is a rational point of y over [,
then ¢ can be defined by

w7 = J(7)
P ¢@(P)=[P— 0]

where [P — O] designates the class of the degree zero divisor P — O in Pic®(y).
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We denote by D, () the effective divisors of degree r of the curve y and by ¢, the
extension of ¢ to D,(y)

@ D7) > I (1)
D— @.(P)=[D—-r-0].

The direct image of ¢, is a sub-variety W, of dimension r if 0 <r <y, and of
dimension ¢ if not. In particular, W,_, defines a divisor on J(y) called Theta and
denoted ©. If J(y) is defined over [,. then the same holds for © together with all its
translate spaces [11, Theorem 4, p. 997].

Here, we investigate the maps

II/;—MD;—I\-(X)_’JSWI(Z)
Dy,.... DY ([D, —D{].....[Dy— Dy ]).

More precisely, following [13], first of all we sct out to determine over F,. the
minimum exponent integer s, if there any, such that ¥}, is not surjective (s € N*,
k = 1,2). Over the algebraic closure of |, F,, these maps are not surjective as far as s is
large enough. Then, for the purpose of decoding. whenever an algebraic-geometric
code is defined on y with designed minimum distance d* we look for divisors F;,
i€ {l,....s} of degree g +[(d* — 1)/2 | such that the (s — 1)-uple of J*~ () repre-
sented by

([Fy = Fil,....lFs— F; 1]

has no inverse image through ¥, ..

In the case of the Klein quartic defined over Fy. for a given code with designed
minimum distance 11, we show that s = 3 fulfills the first condition above and we
determine explicitly a suitable 3-uple of divisors of degree g + [ (d* — 1)/2|= 8.

Our approach here is a concrete one, based on the inspection of the linear series on
the curve y; it is used for the first time as far as we known, so as to bring a touch of
some effectiveness to the Pellikaan algorithm, which seemed to be lacking at first
sight. Needless to say the more recent decoding algorithm such as those from Feng
and Rao [6], Duursma [2,3] and Ehrhardt [4, 5] are admittedly more performing in
particular as far as complexity is concerned.

2. The map ¥;_,

Lemma 2.1. Let @ defined as the self-intersection number of s copies of the divisor ©.
Over F, we have

O #£0 = Ya,....a,) € J'(y). O, NO, N - NO, #0,

where @, = {t + a;|t € O}
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Proof. We know that there exists s translate spaces 6,.0,,....@, such that
0,00, --nO, is well defined [12]. Moreover, for all other translates, @,
©;......0,, we have

dim(@;, NO,.~ - NO,) = dim(O, O, N - NO,,)

with an equality in the case when @, N@, .~ --- N, 1s well defined. Hence the lemma
follows immediately. [
Theorem 2.2. Over F,. ¥,

4

18 surjective if and only if @° # 0.

Proof. Obviously. ¥}, is surjective if and only if
V(E| Ey .. B ) eJ® Ny 3Dy.Dy . D) e Dy (y)
such that Vie {1,....s — 1}, @, (D) =&, i+ @,— (D)) (1)
with &; = Y321 E,.

In addition to that, from Lemma 2.1,

O #£0 < V(E.....E, NeJ (1)1 IeOnO,nO. N---NO,, .
In view of @=W, |, ©°#0 <« V(E,.....E,_)eJ* " ') IDy,....D,)e
Dy 1) 3ced(psuchthatVie {l.....s — 1L E=¢, (D)=t + @, (Ds ;)
Hence, from (1). the theorem is established. [J

— . . . R 1 .
Corollary 2.3. Over F,. W, | is surjective whereas W) "1 s not.

Proof. Over an algebraically closed field, it is known that @¢ = ¢! Thus, @¢ # 0 and
©¢"" =0 and we are done. [
Remark. Over [, it was already known that ‘PZ' ! was not surjective. Actually. by

[13].
dimjd(DZ,‘, ! (7)) < dim: (J9(x)).

Comments. (1) Vladut [16] has produced curves such that over F,, Fy and Fy.
W, -, is surjective for every s € N *,

Hce has also showed that for any curve considered over F
and g large enough, ¥;*, is not surjective [16].

(2) Carbonne and Thiong-Ly [ 1] have shown that the curves whose zeta-function
over F, have numerator of the form

with ¢ > 37 or, g > 16

qs

P(T)=(1 — q-T)
satisfy

w0 (7)< =JY Hy)
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and consequently ¥ _, is not surjective in this case, which gives a strictly smaller

value for s than in the case over [F,.
(3) At last, we prove in the sequel that in the case of the Klein quartic defined over

Fg, ¥9_, is not surjective and so the value found for s comes again smaller than the

one found over F,, as well as the one found over T, by means of the zeta-function.

3. The map ¥} ,
Theorem 3.1. Over T, if @ #0 then V),_, is surjective.

Proof. We have ¥, _, is surjective if and only if
V(ELEs ... E, 1) e Ny, 3D, D,.....D,) € Dy 1(x)
such that Vie {1,....,s — 1}, ¢, 2(D,) = ¢ i + @¢,- (Ds_;) (2)
with g, =Y3_| E;.

Furthermore, by Lemma 2.1,

if @ #£0then V(E,,....E, ) eJ" ' (1),3 € OnO. - nOZ

Eag 1 °

The Poincaré formula, ®974/(g — d) =~ W, holds over an algebraically closed field,

where & stands for the algebraic equivalence of divisors [13]. In particular,

0?2 2-W, ,. Thus, if @ #0 then V(E.....E-;)eJ* (), 3(D;,....D,) e

D;_1.3&eJ(g)suchthat Vie {1.....s — 1},E =20, ,(D,) =2¢e; + 2, (Ds ;).
Hence the theorem follows from (2). [

2 |+1

= gi2_ . . . g/ .
Theorem 3.2. Over [, ‘P;_z © IS surjective whereas ‘Pb.._z s not.

Proof. While

dime (D;_,) (%)) =(g —2)'s and dim; (J* '(3))=g-(s — 1),
we have, as soon as s > g/2,

dime (D 5)(x)) < dimz (J* 1 (7).

Lgi2 |+l .
Thus '{’;,ZJ Is not surjective.

©¢ = ¢! hence ©'*'*) £ 0 and ‘1";,‘”','3J

is surjective. []
Corollary 3.3. Over F,, ¥, _, is surjective if and only if @ # 0.

Proof. It is a consequence of Theorems 3.1 and 3.2, of @ = gl and of @% = 2- W, _,.

0
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Comments. Carbonne and Thiong-Ly [1]. have shown that the curves whose zeta-
function have numerator over F, of the form

PT)=(1 = q-T)

satisfy
- =1 2 +1 y—1):~1
=Dt (7)< sJ5" (7).
g2 -1 . . . . . . .
consequently 'I’E,’fz’ is not surjective in this case. In particular, when ¢ is odd,

20 . . . . . N .
‘[’_,,‘“ 5 ' is not surjective which gives a strictly smaller value for s than in the case
over F,.
Theorem 3.4. For all curves defined over b, with g > 37 or 4 > 16 and g large enough,

q+3
A S
2g-g—1)

withh =4%J(y) and a, > = 3D, 2(7). So WI_, is not surjective.

Proof. We use here the same notations as in [13. Part 3]:

Uy -2 = Z

i~ j=g 2

altt - 1 922

pj= (4’ ' p; = p).
J g —1 i;) j i

g —1
In view of p,.;/q" = p,.;forie!l.....qg}

) Ll £ )
Uy 3 = — = Pi|l=—- Pj— Pil— i |-
! g—1 i=0 q ! g—11g\ ;S ! i=0 g ji=0 !

Since h = Y_ 2 p.

J

| 1 + 1922 1
dy—2 = |:th‘ Pi— Py +pg+4p, 1):|
g—1]g¢ g =0 4 ' '

Passing to the modulus.

1 1 g+ 1927 g+ 1 Ip,|
a,_1 < —h— v+ —— | pa_ |+ == |,
g—2 ([* Ili{f (f i;}l[_/| (} ‘pu ll L]

SO

] )
o L e ] | |-
-2 = oo 1»[1“‘1+ )2 "”']

i=0

=0
Forje{l.....2¢9}. Ip;l < C{,q’* Then
I .o
dy »<—— | h+(g+1) Cl g% |.
' q(ql)[ P L Gl }
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From the Newton formula it yields that

1
s ——h + 1)g? 2229 1.
agu_([((j*l)[q g+ 1)y ]

Firstly from [13],
h>(g"? — 1),

hence,

1.2 g
y-2 _ ! - g + 1)( ‘tﬂl L
h glg — 1) 20 (gt -1y

Secondly from [16],

4 124y
h> ( (.I )
Jalg)
with
Nilg- )iy
f,(g) = max{1.b}(4q~"2)igt et D 1)1<‘/ - 1) b
Jql J
hence
Ay > 1 (g+1)
— < 1 + ) .
h 4lg — 1)|: 2 fal9)

Again by [16], we know that for ¢ = 37. [(4¢q' */(¢"* — 1)*)] < 1 or that for ¢ > 16,
J.(g) tends to O for g » = . We can conclude.  [J

4. Explicit search for divisors establishing the nonsurjectivity of ¢ ;| for the Klein
quartic over [y

We are concerned with the Klein quartic .4, whose equation is
XY +YZ+2Z*X=0.

We work over the field g = F,[x]. where « 1s root of the primitive polynomial
X'+ X+1=0.

A" is nonsingular of genus 3. Let #(Fg ) be the set of the 24 rational points P;,
ie{l,...,24}, over Fy which attains the Serre upper bound.

Its canonical linecar serie K is the unique g cut out by the lincs of the plane. It has
no ¢} and therefore is non hyperelliptic. Futhcrmore, it possesess g3 without fixed
points, of the form K-A, with A € # (Fg). Then .#" will be called trigonal [9].

Fig. 1 review all the elements of 7 (Fg).

Any curve considered in the scqucl will be defined over Fy. For such a curve 7, we
denote by .# - ¢ the associated intersection divisor, rational over Fy.
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P, P, P, P, Ps r P Py
0 (1 /1 1\ % 7\ 2\ {23
0 7 (13 (z“) 1 x‘) ¢ (7‘
I \l, W1 i I 1/ 1 Cl
P, Py P, P, P Py P P,
23 /3t 5\ 7° 72 %' oY x"
1 (‘rﬁ | (1‘) 77 x x") %t
1 Ul 1 \ 1, 1 1 1/ \
P, P P Py P, I Pia P,
ut /o 2t 2° 2® 77\ 1N /0
1 (:( % (1 2" 1‘) 0 ) t
| 1 L1 Ul 1 1/ 0 0

Fig. 1. The points of #(Fy).

Lemma 4.1. The nine lines of the projective plane passing through P, will he denoted by:
Lo Y +2'X=0. ic|0.....6},
L X +Z=0, Ly Y+Z=0.

We have
A Li=Pyy+ Q. +Qy + Q. i€l0....,6

4%/'L7=1)1+3P234 vﬁ/.'Lg:3P1+P24.

where
\
i3 12;{"\ /[zy
0. it Op=1| "] Q.= i*x°
1 1 1
/ / \

Thus these nine lines cover all the 24 elements of # (Fg). We shall say that Py, P,
P.4 is a flex triangle.

The group of automorphisms of 4 1s maximal with respect to the Hurwitz bound.
with its 168 = 84(g — 1) elements. Besides, it occurs as a linear projective group
defined over Fg [see 10]. This 1s why the configuration of Lemma 4.1 described for
P, carries over to any other point of .# (Fy). In particular, ¢cvery point of .# (Fy) is
a flex point and there are eight flex triangles.

We proceed with the two charts shown in Figs. 2 and 3.

We sct

22
Do=> P, and G, =5(P, + P,y + Paoy)

i=2
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Py Py P, Py,

PiPsPro Py

Py Py Py Py

PP PPy

Py P Py Py,

P, Py Ps.Ps; Py.Py s PPy | Pa Py Py Pay Py Po Po P P, P PP,
P,.Py. P\, P Py PP P | Po P PaaPay | Py Ps Py Py P,.P,. P, P,
Py.P. Py Pys PyPr Py Pay | PP P Pas | Py P Py Pay Py PPy Py
PePio PPy | PuPiaPloPoy | PoPialis Py | Ps P PaPyy PP Py Py

P5~P1(I~P15~PZU

PPy P Py

I){h I)l(h IJI(\- [)IU

Po. Py Pys Py

PsPi2 Pia Pag

PePis Py Py

Py Py P Pay

Py Py Py Pay

P‘)~P11~P14~Pll

Py Py PixPay

I,Il|~ Pl,h I)ZAZ' I)E.‘

1)11~P12~P15‘P34

P+, P2 Pro.Pay

1)7.(\« PZI- 1)21~ P.‘_-I.

Fig. 2. All the 42 collinearity positions between points and 4 (Fy ).

PPy Poy

P, PPy,

Py Pis.Pys

Py Ps.Piy

P Piy, Pry

[)—~P1H~[)1H

Py Pio.Pay

P2 Pro. Py

Fig. 3. All the cight flex triangles through points of % (Fg).

and we define the code

Go(Do.Go) = {(resp (@), ....resp () elg' [me Q(Gy — Do)

with the parameters

n=21,

Following Pellikaan, in order to decodc up to t*

.}Z :(Q1,...

k=n—degGy+y—1 =8,

Qs );

QjesuppDy. je

(IR

there exists i, i e {1,....s], such that the map

@O(Fi, 2): L(Gy —

is surjective.

Fi) =05

S Q0 f(Q5))

1....50.

d>d*=degGo+2—-2¢g =11

={(d* — 1}/2 | =5 errors, one
has to find an integer s and a s-uple (F,...., F,), where the F;’s are divisors of degree
g + t* = 8 such that for every r*-uple,

This is a key condition for decoding since it provides a practical way of determining
a function f # 0 whose set of zeros contains the set of locator of errors.
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Moreover, we know that with s > 2 and deg G, = 4g — 1. if ¥, _, is not surjective,
then such an s-uple does exist [14, Proposition 5]. In our set-up., s = 3 turns out
to be suitable. So, it means we have to determine three divisors F, F,. F; of
degree 8 such that for every effective divisors D;,D,,D; of degree y — 1 =2 the
situation

F,—F,=D, —D,. F,—F,

D, — D, (3)

cannot arise { = stands for the linear equivalence for the divisors).

Lemma 4.2. The effective Fy-divisors F on % of degree 8 can be described following the
three distinct pattern as:
(1) F=2K,
(i) F=2K + A~ B; A,Be #'(Fy),
(i) F=K +Y),CiCie #'(Fy)iell, ... 4L

Proof. We can always {ind a cubic curve passing through any set of eight distinct
points. Thus, for any divisor F of degree 8. 3K = F + D with D divisor of degree 4.
Then it yields the three possibilities:

(i) D=K.ie F =2K.

(ii) D e g1 without fixed point. By [15, Proposition 3.14], every divisor of degree 4,
Fg-rational on ¢ is linearly equivalent to

Y Ci. Ciea(Fg) ie{l, ... 4]
and we can always find a conic curve passing through any set of four points so,

4 4
2K=D+ )Y Ciand F=K + ) C,.

i=1 i=1
(i) Degl + B,Be # (Fy). ThusD=K — A+ B.Be # (Fg)andF =2K + A — B.
]
The first step is the search of the F,. ie {1.2,3} as listed in (i), that is, to say
Fi=2K+ A4— B, F,=2K +G — H, Fy=2K+C—-E

with 4,B,C,E,G,H e #(Fg). We see easily that any equality of points in the set
'A,B,C,E.G, H} results in solutions to system (3). In all generality, the research grows
messy due to the non unicity of the conics ¢ and %' introduced below. So, at this
juncture, we investigate the more tractable situation:

F,=2K+ A4 — B, F,=K+ ) C. Fy=2K+C —E,
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where 4. B,C.E,C,,C,,C,,C, e # ([y) are parameters at our disposal to be fixed to
suit our purpose. Then we are led to investigate the system:

4 4
Di—D,=K+4—-)Y C;—B. Dy—D,=K+C—-) C,—E
i=1 i=1
equivalent to
4 - 4 -
B+ Y Ci=D,+D, + A. E+ Y Ci=Dy,+D;+C (4)
i=1 i=1

with

D,=K—D, and D,=K —D,.
We choose E. B, Cy. C,, Cs, and C such that no quadruples of {E,C,, C,,C;,Cy}
and {B,C;, C,,C5,Cy4} arc collincar.

The problem amounts to the following: Let 7 be the conic passing through
B +Y! . C; and with residue D,... i.c.

Lai=1

.
H# %6 =B+ Y Ci+D,..

i=1
Accordingly, ¢’ is the conic¢ such that
4
H 6 =E+ )Y C+D..
=1

D,.. and D, are divisors of degree 3. [ y-rational. We note 7, the residucs of all the
conics passing through D, and 4. and %[, the residues of all the conics passing
through D/, and C. Then. for any divisors D,, D, and Dj solutions of system (4}, we
have by the Brill-Noether theorem.

D2+D_l€{/rcsa (5)
which yields a set of possible D, denoted by & and
D2+D73€(fr,csv (6)

which yields another set & of possible D;.
Our final goal is to find

A,B,C,E,C,.C,.C3,Cye ¥ ([y)
such that
DD =0,

or else such that for all divisor D of &, there is no conic passing through Dy, D and C.
Let  and D/..=o + ' + 75 2, .7 € # (Fg) be given. Then if we assume that

K=D,+oa +p (7
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for every point C € .# {[g). there exists a reducible conic passing through D,. ", ', 5",
and €, namely the product of the lines (x, ') and (7". C). So we have “n &’ # . This
pattern (7) is consequently to be put aside.
Lemma 4.3. When

BetAE 2 By’ and o, By dline( A E).

the pattern (7) cannot arise.

Proof. If we assume
K=D,+ 2 +f

then by (6).
K=D;+C+7

Therefore by (4).

™
+
I

K —(E 4+
Returning to (5), we get
B+D =A+E+ -,
which defines a g;. But the restriction set in the lemma have been suitably designed so
as to make it impossible.
We take B = Pz.zf:l Ci=Py,+ Py+ P,y + P,yand A = P,. Let ¥ be the conic:
X2+ aY 2+ 227 +0°XY +°XZ +2*YZ =0.
We have
4
“A# =B+ ) Ci+ D
i=1
with
D=2+ +7="P+ Po+ Ps.
Let %' be the conic:

X242 Y2+ o' XY +°XZ + 2°YZ = 0.
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We have
4
“ A =E+ ) Ci+ D,
i=1

withE =P and D, =2 + ' +7" = Ps + P, + Py. These points satisfy the condi-
tions of Lemma 4.3.

The nine conics %, ce{ s .0,1,...,2"°} passing through «. §, 7 and 4 are the
conics:

B X2 (b o) Y24 XY (2 + ) XZ 4 (07 ) YZ =0,
cef0,1,...,2%,
and
C. Y+ XY +aXZ + 20 YZ=0.

We have to calculate 7. Listed below are the nine associated intersection divisors:

CO"%/. 2KEP1+P|4+P1(,+P1<;+//’
with # place of degree 4 over [y,

AR 4

I

2K=P,+ P4 +P+ P+ Py +Pyg+ 2Py,
C, A =2K=P, +Pis+Pio+Piog+Ps+ Py+ Pis+ Psyy,
Cor N =2K=P+ Py +Pio+Pog+ P+

with # place of degrec 3 over [y,
Cp A =2K=P, +Piyg+Pig+ Pog+ P, +2-P3+ Py,
Cp X =2K=Py +Pa+ Pro+ Pirog+ P+ Py + Pyo + Py,
Cpo N =2K=P +P4+P+Piog+Pi3+7

with # place of degree 3 over Fy,

'(),w,//'E2K_P]+P14+P1(,+P19+P4+P6+P10+P18,
€, # =2K=P, + P4+ P+ Pig+P;+Pyg+ Py + Pss.

The set & consists of the 32 divisors shown in Fig. 4.

Now the difficulty lies in finding out a point 6 of #"(Fg) such that for every divisor
D of &, the support of the residue with respect to the conics passing through o', ', 3’
and D does not contain %.

We have the following collinear 4-tuples:

(', ', P7,Pay), (2,3, P12, Pig), (' 2 Pa. Pag). (8)
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Pred Py | Poe £ Pay | Prot Pan |29, Po+ Py Pi+Pos | Pat Poy | Po+Pys

Pot+ Py | Pis# Py | P2t Py Py+ Py | 2:P; Pyt Pio | Prv Py | Prt Py

P+ Py Piy+Poo | Pia+ Py Pay + Py Py+ P, Py+ Py | P+ Py | Po+Pia

Pov Pig | Pro b P | P- = Py P-4 Py P-t Py Pyt Poy | Pot Pos | Pro+ Pay

Fig. 4. The set of divisors 7.

We set # = {P-.Psy.P15.P . Py, Py, There are 14 divisors D, such that
supp (D)7 # 0 listed as:

Py+ P, Py+ P Py+ Py Prt+Pyo P+ Py, Pt Payo Py + P
Pis + Pro. Poo+ Py Pao+ Piy. Pag + Pay Pay + Ps, Poy + Pyl Poy + Pys.

For cach of them, the conic passing through «', /.~ and D, occurs as reducible, one of
the line involved corresponding to one of the collinear 4-tuples of (8).

After some calculation, only the three points Ps, Py, and P,, among those of
A (Fy) prove not to be caught in any support of residues with respect to these 14
conics. hence 4 € {Ps. P5. P53},

(a) The five divisors D,:

Py+P,. Piu+Py. P+ Poze Piys+Paye P+ Py

are the only one among the 18 remaining divisors of & such that supp(D,)and o’ or 5’
or ;" are collinears. The five related conics are the union of two lines. The former being
determined by onc of these D,. The latter by the two remaining points in {a/, f',7"}.
With respect to these conics, Py 5 belongs to some support of the residues while Ps and
P53 are not attained yet so C € {Ps, Py3 ).

(b) The conic
X +22Y  +2°Z2° + XY +2*XZ +4°YZ =0

passes through . f".7". D, = Py + P;5 and Ps. Ps is then attained hence C e { P,y 1.
{c) Let us choose C = P,3. We get the following collinearity positions:

(P23 P15 Pyon’). (Pa3,P3.Po. ), (P23.P14.Pro.y’) 9)

Weset #, =(Pi5.P1.P3.Py.Py4.Py). The conics passing through o', /.7, P,;
and one of the points of #, are the union of two lines: the former determined by one

of the collinearity positions of (9) and the latter by the two remaining points in
2L ). The divisors

Pi-+ Py, Pio+ Py Ps+ Py, Po+Pis, Py+ P,

2‘P3- P3+P1(w~ Py + Py, Py + Py,
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are the nine remaining divisors D, among the 13 left such that supp(D;)n#% , # 0.
However, for each of them, # [supp(D,n#, )] =1 # 2, therefore these divisors do
not appear in the intersection with the conics above, which were the only one passing
through ', ’,»" and P, hable to catch them. So the remaining possible divisors to
solve system (3) are four.

Ps + Pys, Po+ Py, Py+Pis, 2Py,

out of the initial set & with 32 elements.

(d) Up to now, we have confined to exploit extensively rich collinearity configura-
tions among points of #(Fg) and we have got all out of it.

To end with the last step lct us consider the four conics passing through o, 5, 3" and
P4

Y24 a*Z2 +a® XY + XZ +2°YZ =0,
Y2+ a?Z2 + XY +2*°XZ +2°YZ =0,
Y24+ a2Z2 4+’ XY +2°YZ =0,
Y2+ 2 XY +aYZ +2'YZ =0.

The support of their residues contains P, 5 but not Py (respectively with ( Py, Pg),
(P55, P5,) and ( Pg,P3)) and so the four remaining divisors are not attained.
Consequently, the theorem follows.
Theorem 4.4. Let Fy,F,. F; be three divisors of degree 8, Fg-rational on 4, satisfving
F152K+P1—P2, FzEK+P4+P()+P1()+PZOv F322K+P23—P|.
Then we have, for any 3-uple (D,,D,.D3)e D3(4"), the system
Fl—quDl‘Dz. Fz*F},EDz*DJr

has no solution.

Checking. From now on C = P, is lixed, wae make sure that the orresponding set &'
satisfies %’ = (. The nine conics ¢..ce { .0, ... .«"}, passing through o', "7
and C are the conics

G Y24+ (1 +ca®)Z2 4+ + )XY +(2° +ca?)XZ + cYZ =0,
ce{0,1,...,2°}
and

“. . ZP+PXY +4°XZ +2*YZ =0.
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Here. below are reviewed the nine intersection divisors:
Co K =2K=2+ +7"+C+P,+P, + P-4+ P,
G A =2K=2 4+ 4+ CH+Py+ Po+ Py + Py,
G =2K=0+f + +C+ 2

with .# place of degree 4 over [y,
b K =2K=2 4+ 0+ +C+ Pis+ P+ 7).

with .2, placc of degree 2 over [y.
Cp H =2k=2"++2"+C+ P, + P+ Py + Pis.
G ¥ =2K=5+p+"+C+P,+ Ps+ Pg+ Py;.
Co N =2K=o0'+ [ +7+C+Pio+ Py + .7

with .2 place of degree 2 over Fy.
Co N =2K=0"++7+C+ 7

with .# place of degree 4 over [y,

“, #=2K=a"4+p+"+C+P,+P,+Piy+Pss.

Then the set 77 of the 33 divisors shown in Fig. 5.
It is then checked &’ = 0 as primarily announced.

Corollary 4.5. By means of the divisors of Theorem 4.4 Pellikaan algorithm is made
effective. We are now in position to decode Co{Do.Gy) and so any geometric code
C,(D, G) as well, defined on the Klein quartic over Fy, with odd degree(G) and d* > 11,
up ro | (d* — 1);2 | errors.

Corollary 4.6. For the Klein quartic defined over By, the map Wi | is not surjective.

—
P, + Py Py + Py- P, + Pay Py +Psy | P-4+ Py | P+ Py Pi+ Py | Py+ Py
Py + Py, Py + Py P+ Py Pis+ P, #) Py + P Prt Pay | Pyt Pas

B T R O e T I O PR IS (VR B IR b Oy R A O

Pot Py | P+ Py |7 Pyt Py P Py Pod Py | Pro+ Prg| Prat Poy

Py + Py

Fig. 5. The set of the divisors <.
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Remark. Through the zeta-function. it can be checked over F. the smallest integer
s such that

ﬁD()<ﬁJ()

1s g + 1. It implies that ¥ is not surjective. Corollary 4.6 improves this result, which is
as far as we know, the first example trcated of this kind.
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