
The Theta divisor of a jacobian variety and the decoding of 

JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

geometric Goppa Codes 

Communicated b> M:1:. Koq: recei\ed 7 No\ember lYY3: rc\~scd I .lune 1994 

Abstract 

Pcllikaan (1989) has given a none&clivc maximal decoding algorithm of a geometric code. 
To this cd our purpose is rhc dctcrmination of the minimal integer s. such that the maps 
‘Y‘ y_l, (Ic = I. 7). &fined in Pelliknan (1989). arc surjective. Then. on the one hand, we show that 
the theta divisor of the jacobian variety of an algebraic curve provides partial answers. On the 
other hand. for the Klein quartic defined over F,. WC determine explicitly divisors of degree 
X which allows uh to decode up to 5 errors. 

1. Introduction 

Let z be an algebraic projective curve. absolutely irreducible. nonsingular. of genus 

q. (61 > 7). defined over the finite field F, with q elements, where q is a power of a prime 

integer. 

We denote by Div(z) the abelian group of the divisors on the curve x and by 

Pit”(y) the group Div(x) modulo the principal divisors made up of the divisors of 

degree zero. 

It is known [l l] that there exists an abelian variety J(z) of dimension .L/ and an 

injective map cp: l+ J(z) such that the extension of x to Div(z) establishes an 

isomorphism between Pic”( z) and J(x). Moreover. if 0 is a rational point of x over IJ,, 

then cp can be defined by 

q: % ---t .J(%) 

P ++ q?(P) = [P - O]. 

whcrc [P - O] designates the class of the degree zero divisor P ~ 0 in Pit”(x). 
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We denote by IED,.(;c) the effective divisors of degree I^ of the curve z and by q,. the 

extension of cp to D,(x) 

II H q&(P) = [D - r.01. 

The direct image of q7, is a sub-variety VVl of dimension r if 0 I r I (1, and of 

dimension ~1 if not. In particular. !AY,,_, defines a divisor on J(z) called Theta and 

denoted 0. If J(x) is defined over IF,,, then the same holds for 0 together with all its 

translate spaces [ll, Theorem 4, p. 991, 

Here, we investigate the maps 

More precisely, following 1131. first of all we set out to determine over [F,, the 

minimum exponent integer s, if there any, such that YG _k is not surjective (s E N*, 

k = 1,2). Over the algebraic closure of IF,, IF<,, these maps are not surjective as far as s is 

large enough. Then, for the purpose of decoding. whenever an algebraic-geometric 

code is defined on x with designed minimum distance rt* we look for divisors FL, 

icz (l,...,.sJ ofdegreeq+L(lI*- I)!21 such that the (s - I)-uple of J”-‘(x) repre- 

sented by 

(r~z-~,l,...,I~,~~, II, 

has no inverse image through ‘UG L. 

In the case of the Klein quartic defined over [Fx. for a given code with designed 

minimum distance 11, we show that s = 3 fulfills the first condition above and we 

determine explicitly a suitable 3-uple of divisors of degree q + L(d* ~ 1)/21 = 8. 

Our approach here is a concrete one, based on the inspection of the linear series on 

the curve x; it is used for the first time as far as we known, so as to bring a touch of 

some effectiveness to the Pellikaan algorithm. which seemed to be lacking at first 

sight. Needless to say the more recent decoding algorithm such as those from Feng 

and Rao [6], Duursma 12.31 and Ehrhardt [4,5] are admittedly more performing in 

particular as far as complexity is concerned. 

2. The map Y& 1 



Proof. We know that there exists s translate spaces 0 ‘,,. OCll, .O,,, such that 

@,,,nO,,,n “. no,, is well defined [13]. Moreover. for all other translates, Oh,, 

Oh,, . Oh,. we have 

dim(O,,,nO, n ..’ n@,,,) 2 dim(O,,,nO,,,n .‘. no,,,) 

with an equality in the case when O,,InO1, n .‘. not,, is mell defined. Hence the lemma 

follows immediately. 0 

Proof. Obviously. Y(l. , is surjcctive if and only if 

‘d(El.EZ . . . . I;‘, ,)EJ” I(%), 3(D,.D, . . . . . U,)E D;,-,(z) 

such that ‘d’i~ (1 ,....I Y- I), (P~_~(D\)=J:, i+ (P‘,-I(D,<~~) 

with i:i = F- ,;=; _&. 

In addition to that. from Lemma 2.1. 

(1) 

O‘fO e V’(E I..... E, ,) E J‘- ‘(l 1. 3,’ E OnO,,nO,:n ... n@,;,, I. 

In view of 0 = b%/, 1, O”#O 0 V(E, ,.... Es_,)EJ’-‘(%). l(,D I..... D.,)E 

Da I(z).~<E J(x)such that Y~E (l,...,~-1:. <=(~ir I(D,\)=i:\-i+ C/Y<, l(Ds~i). 

Hence. from (1). the theorem is established. 0 

Proof’. Over an algebraically closed field. it is known that 0‘) = g! Thus, 0” # 0 and 
@“* 1 = 0 and we are done. 0 

Remark. Over Ey. it was already known that Yz’ : was not surjective. Actually. by 

[13]. 

dirni,~(UID~_’ 1(x)) < dim ,$( J”(l)). 

Comments. (1) Vladut 1161 has produced curves such that over [Fz_ F, and F4, 
‘I/ ’ ~I _ , is surjectivc for every s E N *. 

He has also showed that for any curve considered over [F,!, with q 2 37 or, q 2 16 

and g large enough, ‘f’,$! , is not surjective [16]. 

(3) Carbine and Thiong-Ly [l] have shown that the curves whose zeta-function 

over 6, have numerator of the form 



and consequently Yi_ 1 is not surjcctive in this case. which gives a strictly smaller 

value for s than in the case over 1F,. 

(3) At last, we prove in the sequel that in the case of the Klein quartic defined over 

[F,, Yz_ 1 is not surjective and so the value found for s comes again smaller than the 

one found over iF,, as well as the one found over F, by means of the zeta-function. 

3. The map Yi_, 

Proof. We have Y3_2 is surjective if and only if 

(2) 

Furthermore, by Lemma 2. I, 

if 02” # 0 then ‘d(E, ,___, E,_,) E J‘-’ (x),3: E On@:, ... no,:, ,. 

The Poincare formula, O”-” ;‘(g - 11) z VW,, holds over an algebraically closed field, 

where E stands for the algebraic equivalence of divisors 1131. In particular, 

02 = 2.W,_2. Thus, if O”#O then b’(E, . . . . . E,_,)EJ~~‘(~), 3(D1 ,..., D,)E 

~~~,.3~~J(~)suchthat~‘i~;1......~-1i,~= 2@-z(D,) = 21-:,-i + 2@~2(D,S-J). 
Hence the theorem follows from (2). 0 

Proof. While 

dimrg(D;_z)(x)) = (~1 - 2),.s and dim,,#(J” l(x)) = cj.(.s - l), 

we have, as soon as s > CJ;~. 

dim,q(D;_,)(x)) < dim,,<(J” -r(z)). 

Thus Yk?: ‘+ ’ is not surjective. 

Oy = g! hence 02L9’2J # 0 and Y:,?‘:’ is surjective. 17 

Corollary 3.3. Ocer F,, Yi_- z is surjccticc ~f‘untl or7ly If 02” # 0. 

Proof. It is a consequence of Theorems 3.1 and 3.2, of 0” = g! and of O2 z 2. MYq_ 2. 

0 



Comments. Carbonne and Thiong-Ly [I]. have shown that the curves whose zeta- 

function have numerator over F, of the form 

P(T) =(1 - \ &T)‘” 

satisfy 

conscquentlv YL1 ’ ’ _ 42 IS not surjective in this case. In particular. when $1 is odd, 

‘11 c/ ’ f ’ is not surjectivc which gives a strictly smaller value for s than in the case 

over F,,. 

Proof. We use here the same notations as in [ 13. Part 31: 

In view Of py_i”/’ = p(,_, for iE (I . . . . q) 

Passing to the modulus. 



From the Newton formula it yields that 

Firstly from 1131. 

12 2 (y’:’ - l)‘“, 

hence, 

Secondly from [ 161. 

hence 

Again by [lh], we know that for L/ 2 37, [(4y’ ‘:((/“’ - l)‘)“] < 1 or that for 4 2 16, 

f;(y) tends to 0 for g + %I We can conclude. n 

4. Explicit search for divisors establishing the nonsurjectivity of ‘Pi , for the Klein 

quartic over F8 

We are concerned with the Klein quartic .f’. whose equation is 

x”Y+YJz+z”x=o. 

We work over the field [i’# = FJr]. where ;! is root of the primitive polynomial 

x3+x+1=0. 

3 is nonsingular of genus 3. Let 3’ ([rH ) be the set of the 24 rational points Pi, 

i E (1, . .24), over [F8 which attains the Serrc upper bound. 

Its canonical linear serie ti is the unique (1: cut out by the lines of the plane. It has 

no cl/: and therefore is non hyperelliptic. I-‘uthcrmore, it possesess 61: without fixed 

points, of the form K-A, with A E .x’ (Es). Then .x’ will be called trigonal [9]. 

Fig. 1 review all the elements of 3 (Fx). 

Any curve considered in the seq~~cl will be defined over IF8. For such a curve %, we 

denote by .5”.% the associated intersection divisor, rational over 1F,. 



The group of autornorphisms of .X’ is maximal with respect to the Hurwitz bound, 

with its 168 = 84(cg ~ 1) elements. Besides. it occurs as a linear projective group 

dcfincd over [F8 [see IO]. This is why the configuration of Lemma 4.1 described for 

PI carries over to any other point of .iv’(E,). In particular, every point of X’(F,) is 

a flex point and there are eight flex triangles. 

WC proceed with the two charts shown in Figs. 2 and 3. 

We set 

Do = y Pi and G, = 5(P, + Pz3 + Pza) 
,=2 



P,.PZ.P,,.PJ, P,.P,.P,,,.P, /- I’, , P,. I’,,. I’, * I’, . Pi 1 I’,, 1 I’, ‘1 t’,.t’~,t’,,.t’,,, 

P,.P,,P,.Pz2 P,.P,,.P,.-.P:,, I t’l.h.t’1.t”I 1 P,.Pi,P,,.P,, 1 PL.P7,P ,,,. I’,? 1 

PZII’“.P,L.P,5 P,. I’,,,. I’,,.P,- I’2. P,,. I’,,,. I’,, PI.PS.P,~.PL, P, P,, , PG. Pz 3 

PI,PI.3.t’:J I’?. I’,. I’, , I’,.l’,;.I’,- P,. P,. PJZ 

and we define the code 

with the parameters 

II = 21, k = n ~ degG,, + g ~ I = 8. tl2d*=degG,+2-2<q= 11. 

Following Pellikaan, in order to decode up to f* = L((i* - 1)!2] = 5 errors, one 

has to find an integer s and a s-uplc (F, . , F,,). whcrc the F;‘s are divisors of degree 

q + t* = 8 such that for every t*-maple, 

Y=(cQj ,..., Qs); QjE~uppI)o. ,jE (l,.... 5). 

there exists i, i E (1, . . . ,sj. such that the map 

‘p(Fi. 2): L(G, ~ Fi) + F; 

f’++ (.f’(QI I, . ..J’(Q5)) 

is surjective. 

This is a key condition for decoding since it provides a practical way of determining 

a function f’# 0 whose set of zeros contains the set of locator of errors. 



Moreover. we know that with s 2 2 and deg Go 2 4~1 ~ 1. if ‘pi_, is not surjectivc, 

then such an s-uple does exist [14, Proposition 51. In our set-up, s = 3 turns out 

to be suitable. So, it means we have to determine three divisors Fr. F,, FJ of 

degree 8 such that for every effective divisors Dr.D,, II3 of degree ~1 ~ 1 = 2 the 

situation 

cannot arise ( = stands for the linear equivalence for the divisors). 

Proof. We can always find a cubic curve passing through any set of eight distinct 

points. Thus. for any divisor F of degree 8. 3K = F + D with D divisor of degree 4. 

Then it yields the three possibilities: 

(i) D = K, i.e. F = 2K. 

(ii) D E I-/: without fixed point. By [15. Proposition 3.141, every divisor of degree 4. 

F,-rational on .#” is linearly equivalent to 

iE (1,....4) 
i= I 

and we can always find a conic curve passing through any set of four points so. 

2K E 11 + i Ci and F = K + i C;. 
i=l i= I 

(iii) DE cl_; + B. B E .iv’(E,). Thus D = K - A + B,B E .W’(F,) and [F = 2K + 4 ~ B. 

0 

The first step is the search of the F;. i E (1.2,3) as listed in (ii). that is. to say 

F, -2K+A-B, F2 = 3K + G ~ H, F3-2K+C-E 

with .4, B, C. E, G, H E I?“(~,). We see easily that any equality of points in the set 

(A, B. C, E. G. H) results in solutions to system (3). In all generality. the research grows 

messy due to the non unicity of the tonics % and ‘r;’ introduced below. So. at this 

juncture, we investigate the more tractable situation: 

I:, E 2K + A ~ B, Fz-Kt 1 C,, F, = 2K + C ~ E. 
i= 1 
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where A. B, C. E, C,. C7. C3. CA E 3’ ([ix) are parameters at our disposal to be fixed to 

suit our purpose. Then we are led to investigate the system: 

n, - n, ~ K + A ~ ~ Ci ~ B, D.? -- D, = K + C - i Ci ~ E 
i-l i=l 

equivalent to 

B + i: Ci ~ ~~ + D, + A, 
i=l i- 1 

with 

D, = K ~ D1 and lI.3 = K ~~~ 113. 

We choose E. B, C1. C2. C.3, and CA such that no quadruples of 

and (I?, C,, Cz, C3. C, j arc collinear. 

(4) 

The problem amounts to the following: Let % be the conic passing through 

B + z?, Ci and with residue D,,,. i.e. 

X.X =B+ i Ci+D,,,. 
i= I 

Accordingly, %’ is the conic such that 

.Y’.% = E + t Ci + D;,,. 
i= 1 

D,,, and D:,, are divisors of degree 3. [r,-rational. We note Vr,, the residues of all the 

tonics passing through D,,, and A. and ‘/:,, the residues of all the tonics passing 

through D:,, and C. Then. for any divisors D,, D, and D, solutions of system (4) we 

have by the Hrilf Noethcr theorem. 

Dz + DI E ‘r,,,, 

which yields a set of possible D2 denoted by V and 

D,-tD,~v:,s, 

which yields another set ‘/’ of possible D2. 

Our final goal is to find 

(5) 

(6) 

A,B,C,E,C,.Cz.C3,C~~.~‘([/X) 

such that 

‘/nV’ = 0. 

or else such that for all divisor D of 9. there is no conic passing through D:,,, D and C. 

Let ‘/ and D:,, = a’ + /Y + ;I’; x’, /I’,;)’ E .f (F,) be given. Then if we assume that 

K = D2 + c(’ + fi’ (7) 



[or every point C E 3’ (F,), there exists a reducible conic passing through D,. x’, [I”, ;,‘, 

and C, namely the product of the lines (x’, /j’) and (;s’. C). So wc have Vn’/’ # 0. This 

pattern (7) is consequently to be put aside. 

Lemma 4.3. Whew 

li’$ [A. E, Y’. /I”,;,’ j and x’, /~‘.;~‘$linc(A. E). 

ri7c ptiticw7 (7) c~rrrlrlot irriw. 

Proof. If we assume 

K i n, + 2’ + p’ 

then by (6). 

I< = n, + c + ;,‘. 

Therefore by (4). 

where 

E + .Y’ EE K - (E + ;,‘). 

Returning to (5). we get 

B + D, = .A + E + ;,‘. 

which defines :I (I/:. But the restriction set in the lemma have been suitably designed so 

as to make it impossible. 0 

WC take B = P,. r;‘=, Ci = PA + Pg + PI, + Pzo and A = PII Let % be the conic: 

x2 + IY’ + r”Z’ + r”XY + 1sxz + r”YZ =o. 

We have 

% ..X = B + i Ci + D,,, 
i-l 

with 

D,,, = x + p + ;’ = P,, + P,, + P,, 

Let %’ be the conic: 



We have 

%” .~ = E + i: Ci + D:,, 
,=I 

with E = P, and D;,, = x’ + jl’ + ;” = Ps + P,, + I-‘, . These points satisfy the condi- 

tions of Lemma 4.3. 

The nine tonics %,. c E ( M_ ,O. I, , 9’) passing through a. /,I, 1’ and A are the 

conic,: 

(6,: X'+(a"+c~x')Y'+c~XY+(x'+~~rs)XZ+(%~+~'%~)YZ=O, 

(’ E [O. 1, , XC’ ), 

and 

% * : Y z + r”XY + xxz + 2 YZ = 0. 

We have to calculate 9. Listed below are the nine associated intersection divisors: 

C()..iy’ 55 2K = P, + P,J + P,,, + P,<, + .Y 

with ./P place of degree 4 over F,, 

%, ..f” = 2K = PI + PIA + p,, + P]$, + PI7 + PlcJ + 2.P,Z, 

%;.iy = 2K E P, + P,d + P,,, + p,9 + ps + P‘] + P,, + P24, 

%,,2’. _ N’ = 2K = P, + P,s + P,,, + P,g + P,2 + .Y 

with ./P place of degree 3 over F8, 

%,,,. _ X“ = 2K = P1 + P,5 + P,, + P,,, + Pz + 2.P3 + Plh, 

%.*..iy’ = 2K = PI + P,A + P,c, + P,c) + PI + PIa + pzo + Pz,, 

%.$.A” E 2K = P, + P,5 + P,,, + PI<> + P,.j + .f 

with .d place of degree 3 over EM. 

%.c,..W = 2K = PI + PIA + P,,, + P,,, + P5 + P, + P,, + I’,,, 

‘6 x ..f. = 2K = PI + p,+ + I’,,, + PI,, + P7 + p, + P,, + PL3. 

The set 9 consists of the 32 divisors shown in Fig. 4. 

Now the difficulty lies in finding out a point % of .Y (E,) such that for every divisor 

D of 9, the support of the residue with respect to the tonics passing through r’, p’, 5” 

and D does not contain %. 

We have the following collinear 4-tuples: 

(8) 



7 llmr,c~i/. 1). R~~rillotr .Jou~~~rrrl o# /+I.<~ i/ml .-l/,/h~l .A/~ych~/ I I.2 tIYY6) I.3 ~28 2s 

I’,- i I’,,, I',- t P2: I’,,, t 1’2, 2-1’2, I’< + I’,, Pi + P,i P? + PJA I’,, + I’, i 

P’., + I’,, I’,; i P,, P1 + P, 1’2 + I’, (, 2- I’, p, + f’,,, I’, - P,, I’, + &,, 

I', t I’,, I’,, t P,,, P,a + 1’2, I’?,, t P,, I’.& + i’,, p, i f’,,, Pa + PIH PC> + P,,, 

I’,, 1 I’ Ii I’,,, t I’,, I’- - I’, I’- t I’, , I’- t Pz., PH + 1’1 I I’, + 1’2.1 I’, I + 1’2, 

I -ig. 1. The \et 01 ill\ ,\OTb ‘1. 

WC set I// = ; P-. P7J. P12.P,8.Ps,Pz,,j. There are 14 divisors D7 such that 

supp (D2)n q/ # 0 listed as: 

Pj + P,,. PA + P ,,,. Pr + P,,. P7 + P,, P: + PI,, P- + P23. P,, + P,,. 

P,, + PI,,. P2,, + P,. P2c + P,J. Pzo + Pz,. P,A + Pg. P2.c + P,. P13 + PIS. 

For each of than, the conic passing through 1’. p’.;,’ and D, occurs as reducible, one of 

the line invol\cd corrcspondin g to one of the collinear 4-tuples of (8). 

After son30 calculation, only the three points P,, P, - and P,, among those of 

.%’ (Fx) prove not to be caught in any support of residues with respect to thcsc 14 

tonics. hence % E I P5. P, ?. P2, j 

(a) The five divisors D,: 

1’2 + P,,,. P,, + P,,. I’, , +- P,,. P,- + PZL. P, + 132, 

are the on1y one among the I8 remaining divisors of ‘r such that supp(D2) and 3’ or/j’ 

or ;” are collinears. The five related tonics are the union of two lines. The former being 

determined by one of these D2. The latter by the two remaining points in ($,/I”, ;s’) 

With respect to thcsc tonics. P, 7 belongs to some support of the residues while Ps and 

P2_{ are not attained yet so C E ( P5, P,, ). 

(b) The conic 

,~~+3(‘~~‘+r”Z~+x”,~Y+x~XZ+2’YZ=O 

passes through x’. p’.;,‘. D2 = PC1 + PI j and P5> P, is then attained hence C E [ P7.3). 

(c) Let us choose C = PL3. We get the following collinearity positions: 

(Px,P,7. P,,.x’). (P,,,P.?.P,.P’L (P,,,P14,P19.;“). (9) 

We set ‘N, =(P,-,P,,.P~.P~,.P,I, PI,, ). The conks passing through r’, /I’.;“. P13 

and one of the points of i//, are the union of two lines: the former determined by one 

of the collinearity positions of (9) and the latter by the two remaining points in 

( x’, /I’. ;” ; The divisors 

I’ , - + I’, I). PI,, + P21. Pj + PC,. PL, + P,,. Pz + P,. 

3.P.3. P, + I’,,. P, + PI,, P, + P,, 



are the nine remaining divisors D z among the 13 left such that supp(D,)n V, # 0. 

However, for each of them. # [supp(Dzn///, )] = I # 2, therefore these divisors do 

not appear in the intersection with the tonics above. which were the only one passing 

through x’,p’,;, and P,, liable to catch them. So the remaining possible divisors to 

solve system (3) are four. 

p5 + p15. P, + P,,,. P, + P13, 2,P,z 

out of the initial set ‘9 with 32 elements. 

(d) Up to now, we have confined to exploit extensively rich collinearity configura- 

tions among points of N([F,) and we have got all out of it. 

To end with the last step let us consider the four tonics passing through a’, /I’. ;” and 

p,,: 

Y? + rAZ2 + c(“XY + xz + %? YZ = 0, 

Y 2 + a”Z2 + XY + %5XZ + %5 YZ = 0. 

Y2+x2Z2+a3XY +x3YZ=0, 

Y2+a2XY+ctYZ+x4YZ-0. 

The support of their residues contains PI5 but not P, (respectively with ( Plo. PC,), 

( P22,P22) and ( P8,P13)) and so the four remaining divisors are not attained. 

Consequently, the theorem follows. 

F1 z 2K +P, -P2> F2 =K +P4 +Pq SP,‘] +P2(), F3 =2K +P23 -P,. 

F, - F2 ZE D, - D2. F2 - F3 = D2 ~ DJ 

has no solution. 

Checking. From now on C = Pz3 is lixed, wae make sure that the orresponding set 9’ 

satisfies Yn Y’ = (B. The nine tonics ‘6:. c’ E f :L ,O. I . . cx” j. passing through y’, [I’, 7’ 

and C are the tonics 

(6,: Y2 + (1 +(.x3)22 +(x5 + &)XY +(x5 + cz2)XZ + cYZ = 0, 

L’E {O,l,...,‘Pj 

and 

(6,: Z2+r”XY+x”XZ+x”YZ=0. 



Here. below are reviewed the nine intersection divisors: 

ivith .4 place of degree 4 over F,. 

\vith .4 place of degree 4 over [Fx, 

% , . .f = 3K = %’ + /I’ + ;” + c + P7 + P,L + P 1 C) + P,, 

Then the set //’ of the 33 divisors shown in Fig. 5. 

It is then checked Vn’/’ = 0 as primarily announced. 



Remark. Through the zeta-function. it can be checked over F, the smallest integer 

s such that 

q < #J() 

is g + 1. It implies that Y is not surjcctive. Corollary 4.6 improves this result, which is 

as far as we know, the first example treated of this kind. 
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